1 Explain why each of the following statements is false. State in each case which of the symbols \Rightarrow, \Leftarrow or \Leftrightarrow would make the statement true.
(i) ABCD is a square \Leftrightarrow the diagonals of quadrilateral ABCD intersect at 90°
(ii) x^{2} is an integer $\Rightarrow x$ is an integer

2 Complete each of the following by putting the best connecting symbol \Leftarrow, \Leftarrow or \Rightarrow) in the box. Explain your choice, giving full reasons.
(i) $n^{3}+1$ is an odd integer \square n is an even integer
(ii) $(x-3)(x-2)>0$ \square $x>3$

3 Select the best statement from

$$
\begin{aligned}
& \mathrm{P} \Rightarrow \mathrm{Q} \\
& \mathrm{P} \Leftarrow \mathrm{Q} \\
& \mathrm{P} \Leftrightarrow \mathrm{Q}
\end{aligned}
$$

none of the above
to describe the relationship between P and Q in each of the following cases.
(i) P: WXYZ is a quadrilateral with 4 equal sides

Q : WXYZ is a square
(ii) P: n is an odd integer

Q : $(n+1)^{2}$ is an odd integer
(iii) P: n is greater than 1 and n is a prime number
$\mathrm{Q}: \sqrt{n}$ is not an integer

4 Show that the following statement is false.

$$
x-5=0 \Leftrightarrow x^{2}=25
$$

5 Given that n is a positive integer, write down whether the following statements are always true (T), always false (F) or could be either true or false (E).
(i) $2 n+1$ is an odd integer
(ii) $3 n+1$ is an even integer
(iii) n is odd $\Rightarrow n^{2}$ is odd
(iv) n^{2} is odd $\Rightarrow n^{3}$ is even

6 The converse of the statement ' $\mathrm{P} \Rightarrow \mathrm{Q}^{\prime}$ is ' $\mathrm{Q} \Rightarrow \mathrm{P}$ '.
Write down the converse of the following statement.

$$
\text { ' } n \text { is an odd integer } \Rightarrow 2 n \text { is an even integer.' }
$$

Show that this converse is false.

7 In each of the following cases choose one of the statements

$$
\mathrm{P} \Rightarrow \mathrm{Q} \quad \mathrm{P} \Leftrightarrow \mathrm{Q} \quad \mathrm{P} \Leftarrow \mathrm{Q}
$$

to describe the complete relationship between P and Q .
(i) $\mathrm{P}: x^{2}+x-2=0$

Q: $x=1$
(ii) $\mathrm{P}: \quad y^{3}>1$

Q: $y>1$

