1 Explain why each of the following statements is false. State in each case which of the symbols \Rightarrow , \Leftarrow or \Leftrightarrow would make the statement true.

(i) ABCD is a square \Leftrightarrow the diagonals of quadrilateral ABCD intersect at 90°	[2]
(ii) x^2 is an integer $\Rightarrow x$ is an integer	[2]

2 Complete each of the following by putting the best connecting symbol(, < or) in the box. Explain your choice, giving full reasons.

(i) $n^3 + 1$ is an odd integer	<i>n</i> is an even integer	[[2]
(ii) $(x-3)(x-2) > 0$	<i>x</i> > 3	[[2]

- **3** Select the best statement from
 - $P \Rightarrow Q$ $P \Leftarrow Q$ $P \Leftrightarrow Q$ none of the above

to describe the relationship between P and Q in each of the following cases.

- (i) P: WXYZ is a quadrilateral with 4 equal sides
 - Q: WXYZ is a square
- (ii) P: n is an odd integer
 - Q: $(n+1)^2$ is an odd integer
- (iii) P: *n* is greater than 1 and *n* is a prime number Q: \sqrt{n} is not an integer

[3]

4 Show that the following statement is false.

$$x - 5 = 0 \iff x^2 = 25$$
 [2]

- 5 Given that n is a positive integer, write down whether the following statements are always true (T), always false (F) or could be either true or false (E).
 - (i) 2n + 1 is an odd integer
 - (ii) 3n + 1 is an even integer
 - (iii) $n \text{ is odd} \Rightarrow n^2 \text{ is odd}$
 - (iv) n^2 is odd $\Rightarrow n^3$ is even [3]
- 6 The converse of the statement 'P \Rightarrow Q' is 'Q \Rightarrow P'.

Write down the converse of the following statement.

'n is an odd integer
$$\Rightarrow 2n$$
 is an even integer.'

[2]

Show that this converse is false.

7 In each of the following cases choose one of the statements

$$P \Rightarrow Q \qquad P \Leftrightarrow Q \qquad P \leftarrow Q$$

to describe the complete relationship between P and Q.

- (i) P: $x^2 + x 2 = 0$ Q: x = 1 [1]
- (ii) P: $y^3 > 1$ Q: y > 1 [1]